
Chapter 8

[189]

For large enterprise applications, it is recommended that you use an RDBMS
considering the large amount of data throughout involved.

Although many applications may use text files, XML files, or their own custom
storage engines, in this chapter we will focus on the architectural aspect of designing
and using a relational database for a web application.

Database Architecture and Design
Database design can also be considered as a part of the architecture of the application
that uses an external database to persist data. A thoughtfully-designed database that
is optimally normalized (normalization is a concept that we will learn later in this
chapter) complements the system's architecture. In previous chapters, we learnt that
each application demands its own unique application architecture. The same goes
for database design too, where we design the schema to suit an application's unique
requirements. What worked in one application's database design might not work
in another.

Before going ahead with the actual database architecture and design, we need to
create a plan for the database.

Database Plan
Creating a database plan is the first step in creating a database. The objective of
the plan is to list the core requirements for the database as well as the scope of the
database being designed. This plan will be useful in simplifying the process and
mitigating any risks involved with the actual implementation of the database.

Because every application's data requirements are unique we need different plans
to suit individual scenarios. Some applications might have multiple users accessing
data, and this number may grow over time. Some applications might have few users,
but the amount of data could be huge, and the application may have complex rules
controlling that data. A proper database plan will address a project's requirements
and will also serve as a functional specification for the database after it has been
implemented. Therefore, the planning process will vary according to the nature and
complexity of the project.

The following are the core steps in creating a plan for your database:

Understanding the project's specific requirements
Listing the major entities
Indentifying the relationships between these entities

•

•

•

•

Database Design

[190]

Identifying the relationships between objects
Addressing the scope of the application in terms of size, complexity and
future scalability

Based on the project requirements, we have to create a model of the database. This
model can also be called the design of the database. On a broader level, database
design has two parts—logical design and physical design.

Logical Design
Logical design refers to establishing the relationship between the different system
entities. For example, an employee can have multiple roles. So using a logical design,
we can create relationships between the Employee entity and the Role entity.

Most projects start with the identification of the major entities in the system, and
then progress to identifying relationships between these entities. Entity Relationship
diagrams, or ER diagrams, which we learnt about in Chapter 3, are perfect for
depicting such relationships. Once an ER diagram (which will also be the logical
model of the database) has been defined, we can work on the object model design,
called the domain model. In the domain model, we define different system entities
(or objects), and define the relationships between them (such as association,
aggregation, and so on). We have already created a domain model for our Order
Management System (OMS) in Chapter 3.

In Chapter 3, we created a domain model and created our classes based
on the domain model. This is known as Domain-Driven Design. But some
projects may be heavily data-centric, with little or no business logic. Then
the domain classes would not have much behavior in them. Such classes
would then merely act as data containers. So in these cases, we can go
for a Data-Driven approach, where we bypass the creation of a Domain
model and start directly with the database entities and code using those
classes. The Domain-Driven approach may take more time than the
Data-Driven design, but is recommended because it helps in the
long-term maintenance of the project code base by keeping the code
more organized and flexible.

•

•

